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Ih  

Abstract -Polymer  migration is a generally well-known phenomenon in a flow field, and it has 
been verified that the sources of such phenomena are nonhomogeneity of the flow, concentration 
effects and hydrodynamic interactions between the polymer molecules. In addition, temperature ef- 
fects were found to be another source of polymer migration. The Langevin equation for a polymer 
molecule was first derived from single chain dynamics using a kinetic theory for the bead-spring 
elastic harmonic dumbbell model, as described in part I (reference Ell]). In this paper the diffusion 
equation and concentration profile of the polymer molecules induced by a temperature gradient are 
obtained from the Fokker-Planck equation. A new differential operator is also introduced to calculate 
the concentration profile. From the concentration equation obtained in the general flow geometry, 
we find that in dilute polymer solution there are significant effects on the polymer migration not 
only due to the nonhomogeneity of the flow field but also due to temperature gradients. 

INTRODUCTION 

When polymer molecules are exposed to a flow field 
in a confined geometry, they may not follow the bulk 
flow. The polymer molecule may be behind or ahead 
of the bulk flow, or sometimes may cross the stream- 
line. This phenomenon is called "polymer migration". 

Polymer migration has been extensively studied 
due 1:o the many application possibilities, such as chro- 
matography, rheological measurements, polymer pro- 
cessing, or any system that involves flow. 'The under- 
standing of this phenomenon might provide insight into 
nonuniform product experienced during extrusion or 
injection moulding. Migration is also important to the 
study of red blood cell migration in a blood vessel. 

Bird et al. E23 studied the typically well-known ki- 
netic: theory of polymers in homogeneous flows. Sha- 
rer et al. [-3~ were the first to show the cross-stream 
migration of DNA molecules toward the axis in circu- 
lar Couette flow. In addition, Aubert et al. [14, 51 found 
that there was some form of migration in all flow, 
curved or noncurved. However, in parallel flows, they 
found that the polymer only lags or precedes along a 
singie streamline. The hydrodynamic interactions be- 
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tween the polymer molecules are also responsible for 
a new force, leading to another possibility for polymer 
migration E6-8~. Furthermore, for other polymer mole- 
cule models, Brunn [-91 used nonlinear elastic dumb- 
bells and found that deformability and hydrodynamic 
interaction are indispensible pre-requisites for any net 
migration to take place in viscometric flows. 

Most of the work in this field has been done under 
isothermal conditions. However, in our previous study 
Eli, the temperature gradient effect on polymer dy- 
namics in a flow field was introduced. Applying an 
elastic dumbbell model, Inn et al. Ell  obtained the 
polymer migration velocity and found that there were 
significant effects on polymer migration due to the 
temperature gradient within the flow. 

In this study, starting from the continuity equation 
for the configurational distribution function and devel- 
oping the nth-moment equation, we further scrutinize 
the effect of temperature on polymer migration by 
obtaining a Fokker-Plank type equation and a diffu- 
sion equation of the polymer molecules. In addition, 
we adopt a new differential operator to study polymer 
migration. 

POLYMER CHAIN DYNAMICS 

When polymer molecules are immersed in a Newto- 
nian solvent, dynamic couplings between the two re- 
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suit. In other words, the polymer molecules disturb 
the Newtonian solvent, and at the same time the sol- 
vent changes the polymer conformation. Therefore, 
it is important to study the dynamics of polymer solu- 
tions [103, to understand the overall rheological prop- 
erties and polymer molecular behavior. From the dy- 
namics of polymer solutions, we can obtain the force 
balance equation for the dumbbell beads to investigate 
polymer migration. The study of polymer dynamics 
has been well carried out by Freed and other investi- 
gators [11-16]. 

Considering a single polymer chain in a Newtonian 
solvent, the fundamental equation in fluid dynamics 
equations are derived from the principles of conserva- 
tion of mass and momentum. The equation of motion 
for Newtonian fluids is the following Navier-Stokes 
equation: 

P[-~-t +v .V]v-~V2v+VP=P~t  (1) 

Here v is velocity at position r and time t, p is fluid 
density, P is isotropic pressure, q is viscosity, and F ~t 
is the body force. If we introduce the Reynolds num- 
ber (Re) and Strouhal number (Sr) and assume R e ~ l  
and ReSr ~=1, Eq. (1) can be approximated by a li- 
nearized Navier-Stokes equation [17]. 

0 p ~ -  v -  qV2v + VP = ~ '  (2) 

When a polymer is immersed in a Newtonian solvent, 
bead i exerts a force ~, (t) on the fluid. Given that 
bead i is at position r~ (t), the force zi (t) represents 
a point source. Hence the collection of all polymer 
beads yields a force density s 8[ r - r , ( t ) ]  8~(t), ac- 
ting on the fluid, where 8 is the three-dimensional 
delta function. Therefore, upon introduction of this 
force into Eq. (2), the fluid flow can be characterized 
by the following linearized Navier-Stokes equation 
[ I I -14] :  

O p ~ -  v--rlV2v+VP(r, t) 

= ~2 6[r--r~(t)] z .( t)+l~t  
t = l  

= Z 0(r, t) ~,( t)+l~'  (3) 
i = l  

Here 'O (r, t)-=8[t-r,(t)].  
On the other hand, the equation of motion for the 

ith bead follows Newton's second law as follows: 

d 2 
m : ~  r,(t) = - Gi(t) + f,* + F: c~, (4) 

where, In, is the mass of the i th bead, f,* is the random 
Brownian force and F: o is the connector force:. The 
presence of the solvent will produce a force equal to 
-~, ( t )  on the polymer bead from Newton's third law. 
The simplest model for the connector force (tmown 
as a linear spring or Rouse chain) is given as [11] 

- FF ~= E 3kT . 
J T , ~  ri(t)~A, ri(t), (5) 

where A,:=28tj--Si_L:--Si+t4 is an element of the 
Rouse matrix [2], l is the mean distance between the 
beads, k is the Boltzmann constant, and T is the abso- 
lute temperature. Neglecting the inertia term, Eq. (4) 
can be written as 

A, r,(t) = H(2r,-- r, t -  ri ~ t) = - o, + f,*, (6) 

where H=3kT/F  is the Hookean spring constant. In 
Eq. (6) we still require a hydrodynamic boundary con- 
dition to determine the unknown force oi (t). A bound- 
ary condition requiring no slip at the bead surface 
is mathematically the simplest one and implies that 

E14] 

~',(t)=vEri(t), t]=fd3ro~(r)v(r, t)_--~0i(r)v(r, 0, (7) 

where the over-barred variables imply integration. 
Now we can calculate the velocity of the fluid in 

the presence of a polymer molecule. We can formally 
solve v in terms of the Green function of a pure fluid 
1-15]; 

n 

v(r, t)=v0(r, t ) + G ( r - r :  t - t ~ .  E q~(r) ~i(f) (8) 
i - 1  

Where v0 is the velocity profile in the absence of the 
polymer molecule, which can be calculated from the 
Navier-Stokes and continuity equations. It is well 
known in simple confined geometry. By assuming 
creeping flow, (; can be expressed as the following 
Oseen tensor [10]: 

1 ' r r  

From Eqs. (7) through (9) we obtain the explicit 
expression for single chain dynamics for the i th bead 
[11, 14, 16] in the following form: 

i'i(t)=q~(r) vo(r, t)+q~(OG(r, r; t-t-) 
n 

�9 2: ~(r)l-&r,(O+fF(f)l 
.i=i 

= vo(r,, t) + ~: T o �9 (-- A,r,(t) + ~*) 
J 

(1o) 
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Where T,j( t-  t') = GErm(t)- rj(t'); t -  t ']. Eq. (10) implies 
that the velocity of the i th bead is the summation of 
the undisturbed velocity of the fluid at ri, and the ve- 
locity disturbances created by the beads. The term 
involving T,~ can arise from two different physical ori- 
gins: the Stokes law type of drag force on the same 
bead i for i = j  and the Oseen type of hydrodynamic 
interaction from the different beads j if iCj [15]. The 
calculation of T,j requires fluid mechanical calculations. 

An alternative method is to express the dynamics 
of the polymer chain in terms of a probability function 
~Y, which yields the Fokker-Plank equation. Eq. (10) 
is known as the chain Langevin equation for a single 
chain. In deriving this equation, the n-bead model is 
used. In practice the n-bead model involves extensive 
bookkeeping problems. To avoid this complexity, we 
use a two-bead dumbbell model  Even though this 
dumbbell model in no way accounts for the details 
of the molecular architecture, it has been found that 
the dumbbell qualitatively reproduces most features 
of the N-bead response [-18]. It is orientable and stre- 
tchable, and these two properties are essential for the 
qualitative description of steady-state theological pro- 
perties and those involving slow changes with time. 
Especially from the relaxation process viewpoint, the 
slowest and in many ways most important relaxation 
process is the relaxation of the entire molecule. This 
process affects the end-to-end vector of the entire mo- 
lecule and its dynamics are captured by a simple mod- 
el with just one spring having a bead at each end, 
that is the two-bead elastic dumbbell model [19]. For 
the dumbbell model, the Langevin equation for each 
bead 1 and 2 can be written in the form: 

1"1 = v0(rl, t) + Tu(t--t0" [ FI~*)(0 + fl*(0] + T,2(t-  to" 
[ F2(~)(O + f2*(0J 

r~, = u t) + Tx~(t-- tO- [ F,t')(0 + f,*(i)J + T22(t- t). 
[F?)ff)+ f~*| (11) 

where F, (~) ( i= 1, 2) is the connector for the two-bead 
elastic dumbbell model. 

To simplify our analysis, we neglect the hydrodynam- 
ic interaction between the beads and set [15] 

T~/(t- t ' ) ~ :  ~50~(t-- t'). (12) 

The Brownian random force, f*, can be defined as 
follows: 

f,* = - kT --~-o ln~F. (13) 
dr, 

In polymer kinetic theory, one of the important para- 
meters is the configurational distribution function (~F). 
With these simplifications, Eq. (11) can be written as 

follows: 

i 'l=v0(r,)+~ l ( F , ( c ) - k T ~ r  ~ In'F), 

1"2 = vo(r2) + ~ 1(F2 (c,- kT a-~- ln*). (14) 
Or2 

The coordinates of Eq. (14) are transformed into 
center of mass coordinates Ere= (r, + rz)/2] and inter- 
nal coordinates (R= r2- r l )  by the following procedure 
[13: 

1 . + .  ['c: ~-(r, r~) 

1 d 1 a 

where we define A + = I ( A I + A 2 ) ,  A =A2-A1,  
z 

kT, ~_ 
~ -=~ and . =---13i. 

In this study, since we express the temperature as 
a function of position in the field, viscosity will also 
be a function of position. In addition, from the Stokes 
equation, the friction coefficient also depends on the 
position. Simplifying Eq. (15), we have the velocity 
of the center of mass of the dumbbell in the following 
form: 

1 O lnq~- 1[3 R. ['c: v§ -- ~-~ ~ -  I n ' F -  �89247 ~-r~ (16) 

Again from Eq. (14), we have 

k : i ~ - L  

= v - 2 ~ - 0 - ~ 1 n ~ / - 1 ~  ~ In~F-2J~+IZ (17) 

Using the translation operator, the quantities A+ and 
A are arranged as follows: 

A+ = 1 [exp(rl" V') + exp(r2" V')] A(r')],,:~, 
2 

=exp(r~.V')cosh(R-v ') A(r')[~,=0 

A = l [ -exp( r2"V' ) -  exp(r,.V')] A(r')[~,-o 
z 

, R / \ 
:2exp(r~.V ) s inh~- .V ' )  A(r')l,,:0 (18) 

where the translation operator is defined as: f ( r ) :  exp 
Er'V'ff(r')l,,_o. From the definition of polymer migra- 
tion velocity, A: i '~-v(rc ,  t), we obtain the following 
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equation [1]: 

(A> = 2<exp(r~" W)sinh2(R'v')v(r'),,,=o) 

1 

2<r a In*}  l<~_R) .  (19) 

Here, the angular brackets denote the average over 
the internal coordinates and the underlined term is 
the new result of migration due to the temperature 
gradient. 

EQUATION OF CONCENTRATION 

The configurational distribution function of the poly- 
mer molecules satisfies the following equation of con- 
tinuity which has similarity with the equation of con- 
tinuity in hydrodynamics in the six-dimensional eonfi- 
gurational space [23: 

a'~' _ o_. ( i l l ' ) -  ~ �9 (i-A'). (20) 
0t 0R 

Substituting Eqs. (16) and (17) into Eq. (20), we ob- 
tain 

0t OR 

+ 1  . ~ 0 ' t ' ) + f ~ -  

Or,- ~ , 
1 0 

Eq. (21) is a second-order partial differential equation, 
often referred to as the Fokker-Planck equation. 

Since the calculation of the probability function is 
very difficult we try to obtain an approximate solution. 
The standard procedure is to construct the moment 
equations, and to calculate the first few moments. 

We now define the integration of any function of 
the orientation vector, B(R), over the entire, configura- 
tion space: 

<B}_--fd3R B(R)~'(r. R, t) (22) 

Using Eq. (22), Eq. (21) can be integrated over all 
configuration space as follows: 

. _ _  1 0 oB ?,_) , 1 / a B  O~ ) 2 
at, 

2 0re 

2 ar~ ar~ 

20r~ 

1 0 + ~ -~-  �9 <BI3 R). (23) 

In the case of B :=I, Eq. (23) becomes an equation 
for the concentration profile: 

(1)-~fd3R~F(rc, R, t)=C(r, t) (24) 

Therefore, substituting B--I into Eq. (23), we ob- 
tain 

aC _at area . [ ( v + } + l < _ _ ~ _ )  

2 dr, 
(25) 

By taking Taylor expansions of each term in Eq. (25) 
and neglecting higher order terms, we finally obtain 
the following equation (details are given in Appendix 
A.): 

a C  V.[(v(r~)+l kT ,2 , 
- -  - - -  [ \  8 -H- -  V v(r )1,'=o at 

1 kT 5"V'[3(r')[, =0)C + zV'~(r ' ) l " :~  2 --H-- ' 

l (~(rc)+l  kT V'2~(r'),,,:o)V C]. (26) 
2 ~-H-- 

Eq. (26) turns out to be a general diffusion equation 
of the following form: 

a--C-C §  (27) 
0t 

where J is the flux. Therefore, we can simply trans- 
form Eq. (26) in term of the flux as follows: 

1 [ ~_ 1 kT V,2~(r,)],,=0]V C J=-~-L~(r~)- ~- _H_ 
(a) 

1 kT 
Iv(r,.) ~- -H-- =o + V'2v(r')l/ 

(b) 
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+ 1  , , , 1 kT , , , 
~-V ~(r )It =0-~-  ~ -  v 13(r )It =0]C (28) 

(c) 

In Eq. (28), term (a) implies a diffusion coefficient, 
term (b) comes from the nonhomogeneity of flow and 
term (c) is the new source of polymer migration due 
to a temperature gradient. 

E Q U A T I O N  W I T H  D I F F E R E N T I A L  

O P E R A T O R  

An alternative way to calculate the concentration 
equation, is to introduce a new differential operator. 
First we define the differential operator .~ as: 

0~t' -= ~ t ' .  (29) 
0t 

We apply this equation to Eq. (21) and then obtain 
the following definition for the differential operator. 

_ 0 . + 0 . ( 2 { + ) ~ R  1 0 0 

+2-~ff .(~+R)-~ 1 0 0 
"'+ + 2- -0"~- "~ OR 

ar~ § - ~  "~ R. (30) 

We now redefine f u s i n g  the integral formula: 

fdaR.6~ ~F~q(R)--- f ,  (31) 

where XF,q is the value of a Hookean spring in equilib- 
rium as follows [-2]: 

( H )3/2 [ HR2~ 
* ' ~ = \ - ~ ]  e x p , -  2 ~ T )  (32) 

Using Eq. (31), we calculate each term in Eq. (30) 
(details are given in Appendix B). Therefore d i s  ob- 
tained at r ' = r  as follows: 

kTV'2 ) 
- / ' =  -- ~0r  "exp - - ~ -  v(r')lr,=, 

kTV'2 V' ' 1 0 .exp(wR__ ) 
2 Or 
1 0 0 / kT v'2 \ , , 

4 2 Or Or e x p ~ - - ~ - - ) ~ ( r ) l , : ~  

kT 0 / kTV'2 \ , , 
-f 2H Or " e x p [ ~ - ) V v ' ( r ) l ~ , : .  (33) 

If we integrate Eq. (29) using Eqs. (30) and (31), we 
obtain the concentration equation in the following 
form. 

d C(r, t )~-fC(r ,  t) (34) 
0t 

Applying the quantity f to Eq. (34) we obtain 

1 0 / kT v'2 \ , 0 C(r, t)= 0 - 2 -  --0t - ~ -  " ~ -  e x p / ~ ) ~ ( r  )It,=, 

kTV '2 , 
+ e x p ( ~ - - ) v ( r  )1,,=< 

1 kTV '2 , , 

kTV , , . 
2H exp V ~(r)l , , : ,  C(r, t). 

(35) 

In Eq. (35), C(r, t=0)=Co in the initial state ( t - 0 )  
and at steady state Eq. (35) is 

v . J = 0 .  (36) 

Therefore, the flux (J) can be written as follows: 

kTV _ 1 0 exp ~(r)]r,:, C(r. t) 
J =  2 Or 

kTV '2 , 

1 kTV '2 , , 
+ ~ - e x p ( - ~ ) V  ~(r )l~,:, 

kT kTV'Z , , 
2H e x p ( ~ ) V  13(r)l.,=r]C(r, t). (37) 

By taking Taylor expansions in Eq. (37) and neglecting 
higher order terms, we obtain the following result. 

1 kT V,2~(r,)l ' , VC(r J =  - ~-[~(r)-+- ~-~ _ ] t) 

+ [ v ( r ) +  kT ,2 , 1 , , -8H- V v(r )It , : ,+ ~-V {(r )1,, :~ 

kT 
V'[~(r')[r,:,]C(r, t). (38) 

2H 

It can be easily seen that Eq. (38) gives the same 
result as Eq. (28). 

S U M M A R Y  

This work has shown that, in general, polymer mo- 
lecules move relative to the fluid when the undistur- 
bed flow field is nonhomogeneous, and that there also 
exists an effect of a temperature gradient in the flow 
field of polymer migration. Starting from the well- 
known result of polymer dynamics on a single poly- 
mer chain located in a Newtonian solvent, we obtain 
the force balance equation for a bead-spring dumb- 
bell model. Since obtaining a solution of the configu- 
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rational probability function is rather difficult, the mo- 
ment analysis method is adopted and the polymer con- 
centration is derived from the zeroth moment of the 
nth-moment equation. The results from this study are 
then compared with those from our previous study 
[13. 

From this qualitative analysis, the effect of tempera- 
ture gradient on polymer migration is found from the 
equation of migration velocity, the equation of concen- 
tration and an approximate result using a differential 
operator, gives the same effect on polymer migration. 
The physical origins of polymer migration, so far, are 
associated with the nonhomogeneous flow field, confi- 
ned geometry, and concentration gradient, This paper 
demonstrates that the inclusion of a temperature gra- 
dient changes the migration behavior by contributing 
an additional source term. 
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A P P E N D I X  A :  Der iva t ion  of  Eq. (26)  
Each term in Eq. (25) can be rewritten using a 

Taylor series expansion and the definition of the av- 
erage of some quantity as follows: 

>: < (i) [ z. . v'v'v(r') 

+ I R R :  V'V'v(r')],,:0>~ C 

= v+ r .V'v(r')+ l r ,  r,. z. . V'V'v(r') 

+ 1  kT 
8- -H- v'~v(r')]r 

=[v(r~)+l  -H-kT V,2v(r,)L,:o] C (A1) 

1 O 1 a 

= < ~ R  [exp(r,.- V'/sinh(R �9 V'){(r')],, :o> C 

= -- <8i,~r/~(r') L':o>C 

= lv'{(r')L,=o C (A2) 

1 0 1 O (iii) ~- ~ -  <G> = ~/<~.>~q C 

1 a 

2 8re - 

+ 1RR: V'V'~(r')],,=0>~q C 

1 0 [~(r~)+l kTv,2 . . , . ]  
2 arc H-  ~ ~J~,:o c 
1 0~ + 1  0Cr  + 1  kT 

- 2dr, c ~-~/j~ L ~(ra -g-h- v*r 
(A3) 

i < 8  I 0 

=--l(-~-a g(r~)} C= 1 a r (A4) 
2 "  ar~  -~ ~ 

1 1 

=l<[2[3+R'V'[8(r ')+'"]v=o R>,  C 

= l<RR>~'V'~(r')b,=o C 

_ 1 kT 5"V'~(r')l,,:oC (A5) 
2 H 

Inserting Eqs. (A1)-(A4) into Eq. (25/, we obtain Eq. 
(26). 

APPENDIX B : Derivation of 
Each term of Eq. (30) can be calculated from the 

definition of Eqs. (31) and (321 as follows [define a 
= H/2nkT)3n]: 

(i) fdaR~R-(v ~u fdRz fdR3-~v-iqteq 

(ii) fd3R-~R .(2G)~R .,~ 

=~ ~ + ~  ~I%)_~ (B2) 

(iii) f dZR~R .{ _O_aarc 't% 
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-fdR, a-~ ~V.fdR, fdR3 

, 3 fdR =O (B33 

(iv) fd~Ra--~ .(~.R'~)= f - ~  ~K%dRxfdR~ fdR:~ 

=[~+R,Vj-+= fdR~ fdR~=O 
(B4) 

(da~ , / R ,\ : :  0 J Kcosnk~_.v)ct / HW ~ , 

: :  la~rffdSRexp(-+ ~ "  V ' ) exp ( -  2H~-T)v(r')l,,:, ~ 

/ V'2 ) 
= O - e x p [ k T ~ - ~  v(r')] ..... (B5) 

at,. 

at,- 

0 [ HR 2 \ 
OR a e x p / -  2 ~ - )  

f [ =-aH-H 0 . dSR Rexp .V' exp 
kT ~r~ , 2kT ] 

_ R e x p ( _ R . v ,  ~ / HR ~ \-I ' , 

kTV ,2 
_ a [ e x p ( _ ~ _ _ l V  ~(r )1,,=~,.] (B6) 

ar,- 

(vii) fdaR~r~.-{+-~r~ ~t'~q= ~ .~#_a~r~ f daR~+ ~% 

Or~ Or~ 
[ HR 2 ~expk- 2--~- ) 

_ a a 1- kTV '2 a , . 
at,. ~Sr~ exp [ - sH- - J  r ) l ' : '  (B7) 

(viii) f d ' ~ r  .O_~V,o 

Or~ 

Raexp( -  HR2 / 
2kT J 

: a ~  0 . fd~R[Rexp(~.  ' HR~ 
0r~ 

- R e x P ( 2 - R . v ' )  ( 2 k T ) ] e x p  - HW 13(r')l,,_,,. 

/ kTV '2 
= kT ~ _ . e x p , _ _ _ ~ V , A ( r , ) l , ,  ~ \ 8H / v (B8) 2H art 

Inserting the above equations into Eq. (30), we obtain 
Eq. (33). 

NOMENCLATURE 

a :radius of bead 
A : arbitrary quantity 
A. =(Al+A2)/2 (A=V, ~, and [3) 
A- =A2-A1 (A=V, ~, and [3) 
C :local dumbbell concentration 
H : spring constant 
k : Boltzmann's constant 
r : position vector 
ri :position vector of ith bead 
r,. : center of mass, = (rl + r2)/2 
R : internal configuration coordinate, = r2- rl 
t : time 
T : absolute temperature 
v : fluid velocity 
v,: :fluid velocity at the center of mass 
vo :fluid velocity at the origin 

Greek Let ters  
: friction coefficient 

q : viscosity 
v : 1/~ 

: kT/~ 
xt' : probability function 
~p : probability function (normalized with respect to 

internal coordinates) 
A :polymer migration velocity 
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